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Preface

This is the final report on work performed by L.N.K. Corpora-

tion under contract DAAK 70-79-C-0091. Dr. John W. Bond, Jr.,

DRDME-RT, U.S. Army Mobility Equipment Research and Development

Command served as contract technical monitor. The report was

prepared by L.N.K. scientists, Mr. David Lavine, Ms. Barbara Lambird

and Dr. Laveen N. Kanal. Pattern description and reasons for per-

forming this study are classified. The classified explanation can

be obtained from Dr. Bond, telephone number (703) 664-4547, Autovon

354-5375 or 4547.
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Summary

This is the final report on work performed by L.N.K. Corpora-

tion under contract DAAK 70-79-C-0091 from the U.S. Army Mobility

Equipment Research and Development Command.

> Two basic types of planar point patterns were investigated.

The first type is specified by a set of points in a plane and a

noise model which determines the allowed perturbations of the points

subject only to the restriction that no interpoint distance should

change by more than a certain percentage. The second type is

specified by a set of points subject to angle and distance con-

straints.

Representations of point patterns having some invariance

properties are presented. For the first type of prototype patterns,
" 'r .

these Include SIDV's . Sorted Interpoint Distance-Ve<tor, SNN's -

i."Sorted Nearest Neighbor Vectors), and MST's 'Minimal Spanning

Trees). Theorems, experimental results of simulations, advantages,

disadvantages and comparisons are presented for classification

precedures based on these representations. It is concluded that

classification of the first type of patterns can be accomplished

using the methods based on SIDV's, SNN's and MST's under certain

restrictions. If the number of points in the pattern is small,

less than 100, then the SIDV method would be better, while more

than 100, then the SNN or methods based on MST's would be more use-

ful. If the percentagA-af additions or deletions of points is

small, of the order of/t1 jpere Tt4 then the SDV, SNN, and MST are

still feasible. If the percentage is large, then other methods

must be used.
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The techniques used to classify prototype point patterns give

a measure of the quality of a match which can be used to provide

a measure of the confidence on the classification of a particular

pattern.

For the second type of point prototype specified by a set

of constraints, only one example was provided. An algorithm that

could recognize any instance of this pattern is presented.

Suggestions for further analytical and experimental investi-

gation of classification schemes when the number of additions and

deletions of pattern points becomes large are given in the final

section of the report. Testing of all the devised classification

schemes on actual noisy data from point patterns is also recom-

mended.
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1. Introduction

This final report discusses the research performed by L.N.K.

Corporation for MERADCOM's pattern investigation. The research

included identifying important types of patterns, investigating

invariants of the patterns, developing algorithms for finding these

invariants, and finally developing and testing procedures for

recognizing point patterns.

1.1 Basic Problem

It was assumed that extraction techniques for the point

patterns had been successfullydeveloped so that the patterns con-

sisted of bright blobs embedded in a background of small to moderate

noise. The noise appears in the patterns as relatively few blobs

not as bright as the pattern blobs. The objective is: given a

window with bright spots embedded in a background, recognize and

classify the pattern. A formal statement of the problem is pre-

sented in Appendix I.

1.2 Normal Observer and Planar Terrain

At first, it is assumed that the points of the pattern occur

in a flat or planar terrain and that the observation platform is

normal to this plane. Patterns extracted under such conditions

are refered to as ideal patterns. These patterns could have added

points due to noise but no deleted points.

(



1.3 Non-Normal Observer and Planar Terrain

The terrain is still considered to be flat, but now the obser-

vation platform can be far from normal. All the points in the

pattern are still visible, i.e. there is no fusion or coalescence

of points. This case was not considered any different from the

above case since there are standard techniques for correcting per-

spective distortions given the polar angle. For example see Sec 6.3

of Digital Picture Processing by Azriel Rosenfeld and Avnash C.

Kak (Academic Press, 1976).

1.4 Non-Planar Terrain

If the terrain is not flat, then points can be masked from

the observation platform due to the terrain,or points may coalesce.

Using a terrain database, rectification of the image to the normal

viewing angle is possible, but now the possibility of deletions of

pattern points must be taken into account.

1.5 Translation, Rotation, and Scaling of Point Patterns

Since the observed patterns can have arbitrary orientation

and location in the plane, the classification schemes should work

regardless of any translations, rotations, or scaling. All reported

classification schemes are invariant under rotation and translation.

It is assumed that the altitude of the observation platform is

known, so that scaling to a standard altitude is done on the point

patterns before applying the recognition techniques.

1-2



2. Types of Patterns Investigated

Two basic types of point patterns were investigated. The

first type of pattern is characterized by a prototype pattern which

is specified by a set of points embedded in a plane and a noise

model which determines the allowed perturbations. The second type

of pattern is specified by a set of angle and distance constraints.

2.1 Prototype Patterns

Because actual samples of point patterns were generally

unavailable, the emphasis of the investigation was on prototype

patterns. These patterns are specified as a set of "ideal" patterns

where each pattern is defined by a set of points embedded in a

plane. The noise model then determines to what extent the points

can move around in the plane. In this type of pattern, the number

of points is considered fixed. Results of the investigation on

the prototype patterns are givTen in Sections 3 to 6.

2.2 Pattern Specified by a Set of Constraints

This type of pattern is specified by a set of constraints.

The constraints define regions specified by a set of angles, define

the number of points possible In a region and can also limit the

allowed interpoint distances. Thus, the number of points in such

a pattern is not necessarily fixed.

One example of this type of pattern was made available to us

and the results of investigating this pattern are discussed in

Section 7. To investigate these types of patterns more generally,

( many more patterns need to be provided in order to be able to cate-

gorize the types of constraints that occur in such point patterns.
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3. Invariants of Prototype Patterns

The basic approach used for matching each prototype pattern

to its noisy versions is to define a way for representing both the

prototype and noisy versions. These representations are then com-

pared to determine whether or not they correspond to the same

pattern. Some of the representations involve transformations that

lose information so that it is not possible to reconstruct the

original point pattern from the representation. Generally, the

greater the loss of information in a representation, the simpler

the representation and the easier it is to compare representations.

The most fundamental representation of a point pattern, which

is invariant under rotation and translation, is the interpoint

distance matrix. For a point set A = { al,...,aN } aleR , the

interpoint distance matrix is defined to be the NxN matrix whose

iJth entry is the distance from point ai to point aj.

Ex. 3.1 Let P = I al,a 2,a3}

be a point pattern where

a1 = (0,0)

a2 = (0,4)

a3 = (3,0)

a3

a1  a2

3-1
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0 4  3)
Then IDM(P) = 0 5

3 5 0

This representation is fundamental because it is possible to

reconstruct the original point set from the matrix except for a

translation, rotation and reflection. Since the interpoint distance

matrix, IDM, and the original point set are equivalent in the above

sense, it is natural to compare patterns by comparing their inter-

point distance matrices. Unfortunately, many IDM'S can be derived

from one point set, depending on the order in which the points are

processed.

Ex. 3.2 Let S = {(0,0), (3,0), (o,4)} bea three point pattern.

There are six possible labellings of these points by

labels al, a2 and a3. We show these six labellings and

the corresponding interpoint distance matrix whose ijth

entry is the distance from point i to point J.

Case 1 Labelling Interpoint Distance Matrix

5 4 0al 2

a2  -- t '

a2  a3

3 0

a4 
5 0

a3

3-2



a3  0 5 3
a2a 3 a6( 3 4 )

a2

a2  -

a1

4a 3 0 4 3

64 a0 (55

al

3 a1

The uncertainty in a IDM is determined up to a permutation

of the entries in the matrix. Let A = (a.., alN

a~ 2 a*N

be an interpoint distance matrix for pattern P. Let Sn be the

set of all permutations of the integers { I...,N } . Then the set

of all interpoint distance matrices for the pattern P is given by

3-3
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kair(N 1 ... a(N )lT(N)) TeS n

Ex. 3.3 Let Sn = {}'',6} where

IT 2 2 I

3( 3 (3 2

Le2a (2,1)a 5 (30 an 3 (00 s 3)

A3i xape3.2 theD1i

(01 5 a 
12  a5 0 a

3 
2  a 3 3 J

Let aI = (0,4) a. 30 and a 3 =(0$0) (case 3)
As in example 3.2, the JDM is

The permuted IDM Corresponding to n2 isan2(i),2(I) an 2(1)w2(2
)  an 2(1)n2(3)

an 2 (2)7r2 (1) an 2 (2)F2 (2) an2 (2) n2 (3) I

a 2 (3) 2 (1) a 2 (3) 2 (2 ) a 2(3) 2(3)

a22  a21  a23
a12  all a1 3
a32  a31  a33

3-4
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0 ~ 54

5 0 3

3 0

Note that this is just case 6 in example 3.2
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3.1 Comparing Two Interpoint Distance Matrices

Since the set Sn contains n! elements, the problem of compar-

ing two IDM's can be formidable.

In the simplest possible comparison, we are given two inter-

point distance matrices and ask if they correspond to the same

unperturbed point set, which involves comparing n! permutations.

A more realistic and complex version of the problem involves

comparing two IDM's determined from two different point patterns.

The problem is to decide if one of the point patterns is a pertur-

bation of the other. The comparison is done by finding the permu-

tation of the best component by component fit with the entries of

the other matrix. This search might be performed by doing a least

squares fit of one matrix with each permutation of the other matrix

and selecting the permutation yielding the smallest sum of least

square values. Since this procedure is computationally expensive,

other algorithms were sought to provide approximate solutions to

the problem.

Ex. 3.4 Consider the p'ttern R = { (0,0), (3.1,0), (0,4.2)}

The interpoint distance matrix is

k- .1 0 4.2

(.2 4.2 0)

th
Let A and B be 3x3 matrices whose ij components are aij

and bij respectively. Define d(A,B), the distance

( between A and B by

d(A,B) = E 1 (Aij-Bij)
J3l i-i



To determine the closeness of pattern R and pattern S

of Ex. 3.2, we compute d(A,S i ) for i = 1,...,6 where

the Si are the IDM's of S. We see that A is closest

to case 1 and the distance is .1 2+.2 2+.2 = .09

3-.7 4



. 3.2 Canonical Forms of the Interpoint Distance Matrix

One approach to finding approximate pattern matches is to

compute new representations from the IDM's and compare the patterns

by using the new representations. These representations are

invariant under permutations in Sn . This means two interpoint

distance matrices, which differ only by a permutation belonging to

Sn, will produce the same representation.

One such class of representations is a polynomial on the

entries of the matrix which does not change in value if the matrix

is permuted. A simple example of such a polynomial is the product

of all the non-diagonal entries in the matrix. The construction

n
of polynomials defined on R and invariant under certain types of

permutations has been extensively studied £1].

Ex. 3.5 Let S = t(0,0), (3,0), (0,4)) be the pattern in example

3.2. In each of the six IDM's for this pattern the

product of the non-diagonal elements is 3"3"4"455 =

3,600. Note that this number is independent of the

choice of IDM's.

Several problems arise with the use of invariant polynomials.

First, such invariant polynomials are non-trivial to find. Second,

the invariant polynomials involve multiplication of interpoint

distances, so it is impossible to determine how much the individual

components contributed.

To avoid these difficulties we sought a different type of

(invariant. To each IDM we associate the vector whose entries are

the elements, {aiil J>i, of the matrix but sorted in increasing

order. We denote this sorted interpoint distance vector by SIDV.
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S
A SIDV is invariant under permutations of fhe IDM from which it is

derived. In the following example the two inequivalent IDM'e

give rise to the same SIDV. We have been unable to determine

if this is true for point patterns with more than five points.

Ex. 3-6

I II '

The usefulness of the SIDV is based on the following obser-

vations:

1) In practice we have not encountered distinct patterns with

nearly identical SIDV's.

2) The SIDV is completely determined by the set of points and

not upon the order in which they are processed.

3) Noisy versions of a pattern have SIDV's similar to that of

the original pattern.

4) SIDV's can be used to define a similarity measure between

patterns.

Before elaboration on the above points, we mention a problem

with this approach. The comparison of two SIDV's becomes very ex-

pensive if the cardinalities of the corresponding point sets differ.

3-9
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D

4. The Sorted Interpoint Distance Vector

The SIDV was useful for several classification algorithms.

These procedures provide a measure of the quality of a match

between a noisy pattern and each ideal pattern. Initially,

we assume that a noisy pattern is obtained by perturbing

points in the ideal pattern, so points are neither added nor

deleted. Later, this restriction is lessened slightly, but a

large number of additions or deletions will require other

types of algorithms.

4.1 Theory

Def. Let P = {al,...,an} be a pattern. The interpoint

distance matrix, IDM(P), of P is defined to be the

n x n matrix whose ijth entry is the Euclidean dis-

tance from ai to aj.

Def. The sorted interpoint distance vector, SIDV, of the

pattern P = (al,... ,an} is the vector of size n
2

whose entries are the elements { IDM(P) i} in increa-ij

sing order where IDM(P)ij is the ijth entry of IDM(P).

Ex. 4.1 Let S = {(O,O), (3,0), (0,4)} be the pattern

of example 3.2. Its interpoint distance matrix

is: (0 3 4

3 0 5)
5 0

4-1Lt



The entries above the diagonal are 3, 4, and 5.

Thus these elements, sorted in increasing order

give:

SIDV(S) = ( 3, 4, 5 ).

Our first point pattern classification procedure SIDV com-

pares a pattern P with an ideal pattern P by comparing their

vectors SIDV(P) and SIDV(Pi) componentwise. P and P are said

to be an a-percent match if

ISIDV(PI)j SIDV(P)J I

SIDV(Pi) j

for all J, where the subscript j denotes the jth component of

the vector. We now show that SIDV is an a-percent regular

point pattern classification procedure. (See Appendix I for

the definition of an a- percent regular point pattern classi-

fication procedure. ) This is proved in Theorem I.

This theorem guarantees that if we take a sorted list of numbers

perturb each by no more than a-percent and sort this list then it

must match the original list component by component to within

a-percent. Thus if the first list is the SIDV for a pattern and

the second is the SIDV for an a-percent perturbation, then the

lists must match component by component to within a-percent.
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Thm I Let A {a ...am  and B {b, ,hm where a cR,

U b e R for 1=1,...,m and a1 <a 2  ... am and b I <b<

... <b m . Let M -{ 1,...,m} and assume there exists a 1-1

and onto map f: MM such that

Sa I - bf( 1 ) I foI l,.,
a,___ a for i x..,

ai

Then la, - bi- < a for i =
a i

Proof: If f .i) = i for all li m then we are done. Thus

we are reduced to showing that the result holds for any

such that f-(io) < 10 or f-l(io) > 10.

Case 1) c= f-l(i o )  <10

Hence ac <ao.

Thus blo<0 (i+ a )ac <(1+ a)alo.

Subcase 1) g = f(i ) <i

b > b 9 ( - a )a o
Io g

Subcase 2) g = f(i o ) > 10

bi° b <(I+a ) a1 o

Claim: there exists a j0 > i. such that

f(Jo) <io.

From this we see bi ,> bf(o )

(1-ca)ao> (i-a)ao
jo 10

The claim follows from the fact that if

f(k) > i o  for k E {i +l,...,m) then since

f(i ) > 10 we must have f(kl) - f(k 2 ) for

some kl, k2 c{io+l,,..,m ). This contra-

dicts the assumption that f is 1-1.

4-3



Case 2) f1l(i ) > i.0

The proof is analogous to that of case 1.

This fact allows a measure of the quality of the fit to be

made. If any pair of corresponding components fail to match to

within a-percent then P can not be an ai-percent noisy pattern of P.

Any of the standard measures of distance between vectors, such as

Euclidean distance, can be computed, resulting in a measure of the

goodness of fit.



S 4.2 Example Using SIDV Algorithm

In this section, we demonstrate how SIDV is used to classify

patterns. Fig 4-1(a) shows an ideal pattern (solid circles)

called A and an a-percent noisy version of that pattern (open circles)

called N. Fig 4-1(b) shows a different ideal pattern, called B.

The interpoint distances of each of the three patterns are

calculated and sorted. A component by component difference is

then computed. Fig 4-2(a) shows ideal pattern A compared with

noisy pattern N. The third column is the absolute difference

between their sorted interpoint distance vectors. Fig 4-2(b)

shows ideal pattern B similarly compared with noisy pattern N.

Suppose a threshold for the difference is selected and the

number of differences greater than this threshold is counted. If

a threshold of 2.0 is picked, then no differences greater than 2.0

occur in the comparison of pattern A and N. But, five differences

are greater than 2.0 in the comparison of patterns B and N.

Using a threshold of 2.0, pattern N would be classified an an

a-percent noisy version of pattern A and not pattern B. Fig 4-3

shows a plot of the total number of differences greater than the

threshold of 2.0.

4-5



3700*

0.0

Fig 4-1(a). The solid circles form ideal pattern A. The open circles form

patcern N, an s-percent noisy version of pattern A.
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Fi.4-1(b). The solid circles form IelptenB



Sorted Interpoint Distances

Diff
Ideal A Noisy N Difference Threshold>2

6.2 6.0 0.2
6.2 6.3 0.1
8.0 7.5 0.5
8.0 8.2 0.2
8.0 8.6 0.6
8.0 9.9 1.9
12.1 11.9 0.2
12.1 12.2 0.1
13.1 13.1 0.0
13.1 13.9 0.8

Fig 4-2(a). Comparing SIDV's of patterns A and N.

Diff
Ideal B Noisy N Difference Threshold>2

6.2 6.0 0.2
6.2 6.3 0.1
8.0 7.5 0.5
8.0 8.2 0.2
9.0 8.6 0.4
14.2 9.9 4.3 /
14.2 11.9 2.3 /
15.8 12.2 3.6 /
15.8 13.1 2.7 1
20.6 13.9 6.7 /

Fig 4-2(b). Comparing SIDV's of patterns B and N.

4-8
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Example of Using
S IDV

one comparison had one comparison had
zero differences greater five differences greater
than the threshold than the threshold

number
of

comparisons

0 -I 1----
0 1 2 3 4 5 6

number of differences
greater than threshold =2.0

Fig 4-3. Histogram of Result of Comparing Noisy Pattern N with Ideal Patterns
A and B.
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4.3 Experimentation Using SIDV__Algorithm

Three patterns each with twenty points were created, shown in

Fig 4-4(a), (b), and (c), to be used as ideal patterns. Uniform

noise within a rectangle about each point was used to create three

noisy versions of each of the three ideal patterns, as demonstrated

on one point in Fig 4-4(a).

Each of the noisy versions was compared with each of the ideal

patterns as explained in Sec 4.2. The absolute difference between

corresponding components ranged from 0 to 20. A wide range of

thresholds were possible for perfect classification. Using an

absolute difference threshold of 4.0, the results are shown in

Fig 4-5. The x-axis shown the total number of differences greater

than the threshold. Note that the cluster of comparing ideal

patterns with noisy versions of themselves is well separated from

the cluster of comparing ideal patterns with noisy versions of

other ideal patterns.

The effect of deleting a point from a noisy version of an

ideal pattern was investigated next. Deleted points are possible

when dealing with non-planar terrain as discussed in Sec 1.4.

For each of the three ideal patterns, five noisy patterns

were generated but with one point missing (a different point each

time). The SIDV's of the noisy patterns are shorter than the SIDV's

of the ideal patterns since the pattet'ns have fewer points.

In order to compare using corresponding component differences,

the two sets of SIDV's must be made- the same length. This was

done by adding distances to the shorter SIDV's. The added distances

were uniformly distributed over the range of values in the shorter

list. (If a point on the outskirts of an ideal pattern was deleted,

4-10



100-

FLI
80.

60

20-
0

020 40 60 80 100

Fig 4-4(a). Synthetic pattern with twenty points used in testing the SIDV
classification procedure. The box around the point represents
the amount of noise allowed for each point.
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100-

80-0

60 0

400

200

40 406 8 0
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100.

80

60 ,

20

20 406 8

( Fig 4-4(c). Synthetic pattern used for testing the SIDV classification procedure.
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I

8

7

6 Cluster of comparisons Cluster of comparisons
number 5 between ideal patterns between ideal patterns and

of and noisy versions of noisy versions of different
comparisons 4 themselves ideal patterns

3

2

1

0 1 2 3 4 50 6 70 8 9 100 10

number of differences greater than threshold = 4.0

Fig 4-5. Histogram of result of experimentation comparing three synthetic
patterns with noisy versions of themselves. The three patterns
are shown in Fig 4.4.

Scomparison between an ideal pattern
5 1 and a noisy version of itself

4comparison between an ideal pattern
4 and a noisy version of a different pattern

3-

2

0 10 20 30 40 50 60 80 90 100 110

number of differences greater than the threshold = 4.0

Fig 4-6. Histogram of result of experimentation comparing three synthetic
patterns with five noisy versions of themselves. The noisy patterns
had one deleted point.
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' the missing distances would range over the possible distance

lengths. Thus adding distances that are distributed over the range

of possible distance lengths Is like adding a point to the edge of

the ideal pattern.)

Using the threshold of 4.0 it was possible to correctly classify

thirty-four out of the thirty-six comparisons. The histogram is

shown in Fig 4-6.
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5. Nearest Neighbor Algorithm

The various classification procedures using the sorted in-

terpoint distance vector provided good classification in limi-

ted experimentation, but did not appear feasible if noisy pat-

terns contained more than one or two additions or deletions.

The primary problem in this more general situation is that

SIDV methods involve matching a sequence to a subsequence of

another sequence, which can rapidly become computationally ex-

pensive. To overcome the combinatorial problem, a nearest

neighbor procedure was devised where a pattern consisting of n

points is represented by a vector with n components in contrast

to the nx(n-l) components required by the SIDV methods.
2

5.1 Theory

The vector of length n assigned to a pattern by the nearest

neighbor procedure consists of finding the distance from each

point to its closest neighbor and then sorting these distances

in increasing order.

Def. Let P = {al,...,a n } be a pattern. The sorted nearest

neighbor vector, denoted SNN(P), is the n-tuple whose ith

component denoted SNN(P) i is the ith largest element in

the collection min d {(ai,aj 
n

i#J i=l

5-1



Ex. 5.1

(1,2) (2,2) (4,2)

(0,0) (1,0)

Point Nearest Neighbor Distance

(0,0) (1,0) 1

(1,0) (0,0) 1

(1,2) (2,2) 1

(2,2) (1,2) 1

(4,2) (2,2) 2

SNN = ( 1, 1, 1, 1, 2 )

The motivations for selecting this vector SNN(P) to repre-

sent the pattern P are: 1) the size of the vector is small, re-

ducing combinatorial problems in matching, 2) an a-percent re-

gular point classification procedure can be defined using SNN(P).

Major disadvantages of this scheme are 1) many dissimilar pat-

terns have identical sorted nearest neighbor vectors, 2) the

sorted nearest neighbors are mainly the relatively shorter edge

lengths in the complete graph of the pattern and short edge
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lengths may tend to vary by a longer fraction of their length

than longer ones.

Ex. 5.2

(1,2) (2,2)

(2,1) (4,1)

(0,0)(1,0) (0,0)(lO)(2,0)(3,0)(4,O) (6,o)

The two patterns shown above have the same

SNN = (1,1,1,1,1,2)

The SNN algorithms are identical to the SIDV algorithms

except that, of course, the SNN is used. As a first step in

understanding the usefulness of the SNN, we examine its be-

havior under a-percent perturbations.

Lemma I Let P = {al,...,an } be a pattern and let

P, - {bl,..., bn } be an a-percent perturbation of P

such that b corresponds to aI for i - 1,...,n. For

i = 1,...,n let di = in d(a i aj) and let

d' In d(bi,bj). Then (1-a )di dij (l+c)d 1 for

i O

Proof: Let l< I <n. Select jsuch that d(b10 1bjo) i
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and k0such that d(ai,,a~ k d1o, where

i= d(b10 ~bjo) > (1-a)d(ai0~ajo) (1-a)d(ai0,ako

S(1-a)dio

and

di =d(biib) <d(bio,b 0  <(l-a)d(ai0,,ako)

, (1+ctdidj

Thus (1-a)d1 o <d -A ~ ado

So the distance of a point to its nearest neighbor can change

by no more than a-percent under an a-percent perturbation. U-

sing Lemma I and Theorem I, we show that the SUN changes com-

ponentwise by no more than a-percent under an a-percent per-

turbat ion.

Thin II Let P = {al,...,a,,J be a pattern and let P'

{bl ... l*b n} be an a-percent perturbation of P. Then

jSNN(P)4 - SNN(P') a
SNNYi

for i = 1..n

Proof: We first show that if v,we P and w is the nearest

neighbor of v and v' and w' are the corresponding

points In P', and z'e PI is a nearest neighbor of v',

then

1d(v,w) - d(v'.z') a

d(v,w)<a
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Since P' is an a-percent perturbation of P,

Thus if z' is the nearest neighbor of v',

d(v',z') < d(v' ,wl) < (1+a)d(v,w).

Assume z is the point in P corresponding to z' in PI.

Then

(1-a)d(v,z) < d(v',z') <(1+a)d(v,z).

Since w is the nearest neighbor of v,

Thus

(1-a)d(v,w) < (1-a)d(v,z) < d(v',z').

We now have

Hence

d(v,w) -d(v',z') I a.
d(v,w)

Without loss of generality, assume that bi corresponds

to ai. Let al a nearest neighbor of ai and bj a

nearest neighbor of bi By the above argument,

d(a1,a') -d(b j,b) < a
4d(ai,a')

Thus the theorem follows immediately by applying

Theorem I.
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5.2 Example Using SNN Algorithm

In this section, an example using the sorted nearest neighbor

vector is discussed. Fig 5-1(a), (b) and (c) show three different

ideal patterns (even though they "look" similar). Fig 5-2(a)-(c)

show the same three patterns but with the nearest neighbors con-

nected.

Let the distances to the nearest neighbor in each pattern be

sorted and then calculate the range allowed for the nearest neigh-

bor distance using the results of Thm II with a = 10%. The list

of sorted nearest neighbors with the allowed ranges is shown in

Fig 5-3.

Now suppose the noisy pattern that is to be classified has

the sorted nearest neighobr distances NP(l) thru NP(5).

Using Thm II, these distances must satisfy the following

inequalities in order to be a noisy version of pattern A.

4.5 < NP(l) < 5.5

9.0 < NP(2) < 11.0

13.5 < NP(3) < 16.5

18.0 < NP(4) < 22.0

22.5 < NP(5) < 27.5

Similar sets of inequalities must be satisfied in order for

a noisy pattern to classified as noisy versions of patterns B

and C.

If the sorted interpoint distances of the noisy pattern are

5.7, 9.7, 13.8, 19.2 and 24.0, then it is a noisy versicn of

pattern B.
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Pattern A Pattern B Pattern C

5 (4.5-5.5) 6.2 (5.6-6.8) 6.5 (5.8-7.2)
10 (9.0-11.0) 10 (9.0-11.0) 10 (9.0-11.0)
15 (13.5-16.5) 14 (12.6-15.4) 17.5 (15.5-18.9)
20 (18.0-22.0) 20 (18.0-22.0) 20 (18.0-22.0)
25 (22.5-27.5) 25 (22.5-27.5) 25 (22.5-27.5)

Fig 5-3. Sorted nearest neighbor distances for the three patterns plus the
allowed range of nearest neighbor distances, in parentheses, assum-
ing 10% noise.

5-8



5.3 Experimentation Using SNN Algorithm

in order to test the SNN algorithm, nineteen ideal patterns

with twenty points each were generated. Each roughly covered the

same area of 100 by 100 units. The twenty patterns are shown in

Appendix II.

The patterns were completely distinguishable ucing an a =10%.

The classification algorithm is shown in Fig 5-4. Thus any a-noisy

version of the nineteen patterns would be perfectly classified.
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SNN Classification Algorithm for 19 Synthetic Patterns

(1) If(NP(14)>8.2)then NP is pattern A.

(2) If (NP(12),8.2 and NP(20)-15.) then NP is pattern B.

(3) If (NP(5)>8.2 and NP(20)>18.) then NP is pattern C.

(4) If (NP(10)>7.1 and NP(20)>18.) then NP is pattern D.

(5) If (NP(16)>lI.7 and NP(9)>8. and NP(20)30.) then NP is pattern E.

(6) If (NP(20)>21. and NP(17)m16.8 and NP(7)>8.4 and NP(8)>8.4 and NP(16)>12.1)

then MP is pattern F.

(7) If (NP(9)>7. and NP(20))25.) then NP is pattern G.

(8) If (NP(20)>30. and 8.2cNP(1)<I.8 and NP(4)>1.8 and NP(10)>11.2)

then NP is pattern H.

(9) If (NP(20)>40. and NP(20)>35. and NP(7)>8.2 and NP(19)k25.) then NP is

pattern I.

(10) If (NP(20)>40. and NP(8)>8.2) then NP is pattern J.

(11) If (NP(20)>34. and NP(19)>22.) then NP is pattern K.

(12) If (NP(19)>26. and NP(1)>8.2) then NP is pattern L.

(13) If (NP(1)>8.2 and NP(5)>8.2)then NP is pattern M.

(14) If (NP(1)>8.2 and NP(5)>8.2 and NP(6)>8.2) then NP is pattern N.

(15) If (NP(1)>8.2 and NP(5)>8.2 and NP(6) -8.2 and NP(12)>lI.8) then NP is

pattern 0.

(16) If (NP(1),8.2 and NP(5) -8.2 and NP(6),.8.2 and NP(12)Il.8) then NP is

pattern P.

(17) If (NPfl)>1.8) then NP is pattern Q.

(18) If (NP(4)11.8) then NP is pattern R.

(19) Otherwise NP is pattern S.

Fig 5-4. The SNN algorithm for classifying a noisy pattern as one of the nineteen
synthetic patterns.
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6. Minimal Spanning Tree Methods

The SIDV and SNN do not explicitly encode any global informa-

tion about a pattern. The only information used in constructing

an SIDV or SNN Is the distance between two points and includes no

information about the structure. Nevertheless experiment Indicates

the potential of these vectors for classification. In order to

explicitly capture more global pattern information, the minimal

spanning tree of a pattern P, denoted MST(P) was explored. A series

of papers [5,6,7] developed applications of the MST to clustering,

bubble chamber pictures, and noisy template matching. Several

results, which are useful in analyzing the MST methods, are given

in this section.

6.1 Graph Theoretical Definitions of MST's

Basic notions from graph theory [ 2 ] will be presented

in this section. Applications to point pattern classification will

be given in the next section. Graph theory is the study of struc-

tures composed of points and lines connecting them. A graph is a
n

finite set of points in R and a set of lines connecting some pairs

of points.* For present purposes our graphs will lie in R . The

points in the graph are called vertices and the lines are called

edges.

R denotes a space of real numbers and n denotes the dimension of the space.
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Ex. 6.1

a)

b

a

vertices = {a,b}

edges = {(a,b)} where eab denotes the edges joining

vertices a and b.

b)

b

ae 
f

d

vertices = {a,b,c,d,e,f}

edges = {eab,ebc,ecd,edeeef }

The set of vertices of G is denoted V(G) and the set of edges of

G is denoted E(G). A weighted graph is a graph, together with an

assignment of a positive real number to each edge. The weight of

a weighted graph is the sum of the numbers assigned to the edges

of G.

(-
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Ex. 6.2

b

a 3 c e5f e if

d

The depicted graph is a weighted graph with the weights
written next to the corresponding edges. The total
weight of the graph is 1+2+3+4+5 = 15.

A path in a graph G is a sequence of vertices and edges of

G, v0 e1 vle 2...ekvkwhere the ej, (l< i<k) are edges, the

Vi, (0< i <k) are vertices, edgee 1 has endpoints vi and vi_ 1 for

e. # ej for all i and J and no two vertices are the same except

for possibly v0 and vk. A cycle is a path in which v0 = vk.

Ex. 6.3
b

a -c

a,eabb,ebcc,ecdd is apath. a,eabb,ebcc,e4Aa is a

cycle.
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D A graph is called connected if given any two distinct vertices a

and b of the graph there is a path v0 elv.. .ekvksuch that v. = a

and vk = b. A tree is a connected graph with no cycles.

Ex. 6.4 The graph of example 6.3 is connected while that of

example 6.2 is not.

A spanning tree T of a graph G is a tree whose vertices are exactly

those of G and whose edges are a subset (possibly all) of the edges

of G.

Ex. 6.5 b

bd

G d f d Z f

G=

Qe

a- e
c a c

A graph G and a spanning tree T, of G are shown above.

A minimal spanning tree of a weighted graph is a spanning tree of

G such that no other spanning tree of G has less weight.

6
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Ex. 6.6

b b

anc a c

G 5 5 5

e 5 de 5 d

A weighted graph G and a MST T for G are shown above.

6-5



6.2 Theory of Using MST's for Classification

The SIDV of a pattern is uniquely determined by the pattern

and is thus independent of the order in which the points in the

pattern are processed by the algorithms. This is, unfortunately,

not true for the MST. Any graph in which some point has a non-

unique nearest neighbor has at least two MST's, which need not

be isomorphic.

3 3
Ex. 6.7

G 3

5 2

T= T1

T and T1 are distinct MST's for the graph G.

(
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Lemma II Let P be a pattern. Let G be the complete graph on P

and let S be a set of edges in G that are known to lie

in every MST for G. Let GS be the subgraph of G con-

sisting of the edges in S. Let CS = C1 ,...,C w  denote

the set of connected components of S. Define the dis-

tance, d(Ci,Cj) , between two components Ci and C by

d(Cj,Cj) = min L(e)
eEE(Q)

where e has one end in C1 and the other in C Let

f c E(G)-S. Assume there exists an i,J such that

d(CiCj) = L(f)

and f has one end in C i and one end in C and

d(Ci,Cj) < d(Ci,C k )

for k # i,j and for all g s E(G) such that g has one end

in Ci and the other in Cj, we have g#f implies L(f)<L(g).

Then f is in every MST of G.

The above result provides information on the possible var-

iations among MST's for a given point set. Having obtained some

understanding of this variability, we now turn to the variability

in MST's for an a-percent perturbation of a point pattern. If one

can determine a set of edges, E, contained in every MST of a point

pattern P, such that any a-percent perturbation P' of P contains

a subgraph consisting of an a-percent perturbation of the edges of
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E, then we have a potentially powerful tool fr matching 'ater.is.

Ex. 6.8

5
2 31 4

Pattern P

The edges e1 2 , e2 3 , e34 are in any MST of pattern P

by Thm III. Furthermore as we will show in Thm IV,

any 10-percent perturbation P' of P will have the fol-

lowing property. Given any MST M of P', there exists

3 edges eab, ebc, and ecd where a,b,c, and d are ver-

tices of M, no two of which are eaual and

(e.,) - (e p)
e12 )  - < 0.1

(eh ) - (e 3 ) 1 0.1

(e2 3 ) 
-

I(e , ) (e ,, ) j  < 0. 1(e ) -(e

Thus given a pattern Q, one test that can be applied to

determine if it could be an 10-percent perturbation of

P is to compute an MST for Q and determine if M has 3

adjacent edges satisfying the above inequalities.
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If such equal edge lengths are the only sources of non-uniqueness

in MST's then one might determine the extent to which this non-

uniqueness hinders matching. We now show that the nearest neighbor

equal edges lengths are the only sources of non-uniqueness in MST

Thm III Let P be a pattern, Let G be the complete graph on the

pattern and let M be a minimal spanning tree of G. If evw

is an edge of G such that either

1) d(v,w) < d(v,z) for zEV(G), z~v, z~w

or 2) d(v,w) d(w,z) for zcV(G), zv, zfw

Then e c E(M).
vw

Proof: Assume evw t M. Then M U {e vw Is a graph with

exactly one cycle and this cycle contains the edge evw.

The cycle must contain edges f,g f~g such that f is in-

cident on w and f#evw, or g#evw. If such edges did not

exist, M would not be connected. G' = M U {evw} - {f) is

a connected graph since removing an edge from a cycle can

not disconnect it. Furthermore L(evw) <L(f) where L de-

notes the weight of the edge. Thus L(O'fl L(M), contradict-

ing the minimality of M. Hence evw C M.

We can show that this procedure for deciding which edges

can be in an MST can be iterated. As a corollary of this result,

we will see that if no two interpoint distances in a point pattern

are the same, the MST is uniquely determined [5].

*U denotes the operation of set Union.
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D

Thm IV Let P be a pattern, let G be the complete graph on P.

Let abe a real number greater than zero and let P' be an

a-percent perturbation of P. Let G' be the complete graph

on P' and let M be a MST for G'. If evw is an edge of C

such that either

1) d(v,w)<d(v,z) for zcV(G), z~v, z~w

or

2) d(v,w) !d(w,z) for zeV(G), z#v, z~w.

Then evwEE(M).

This follows immediately from Theorems I and III.

The MST of a point pattern can be used for many types of

pattern matching. We have experimented with three procedures

1) matching of degree sequences, 2) matching of longest linear

paths and 3) matching of adjacent pairs of edges. The first and

third procedures depend only upon the measurement of the edges

incident upon a point. Thus these procedures are in the spirit of

the SIDV or the SNN in that they attempt to match whole patterns

by requiring a set of local measurements to match up. In contrast,

to the earlier procedures, the measurement generally takes into

account at least two edgos simultaneously, thus providing a slightly

more global set of local operations. Modifications of the adjacent

edges permit one to take into account far more global structure into

the local operations but at greater computational expense.
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6.3 Examples of MST's

Minimal spanning trees were generated for the nineteen ideal

patterns used for experimentation in the nearest neighbor algorithm.

They are shown in Appendix III. One noisy version of each ideal

pattern was calculated and their MST's are shown in Appendix IV.

It is easy to see that the MST does change under noise but

that the glob-al structure seems to remain stable.

6.~4 Experimentation with MST's

Experimentation of classification using the MST algorithm is

incomplete at the end of this phase of the investigation.

Attempts to classify using matching of degree sequences or matching

using longest linear paths did not work on the patterns discussed

above.

A degree of a vertex (point) in a MST is the number of edges

coming out of that node. A degree sequence of a MST is then the

sorted list of degrees of the points In the MST. Fig 6-1 shows

the degree sequences of the MST's for the ideal patterns and their

noisy patterns. There was not enough of a match, in general,

between the degree sequences of an i-deal pattern and its noisy

version to devise a classification scheme.

The next attempt in finding a classification scheme used long-

est linear paths. Longest linear paths are found by starting at a

vertex of degree one, and following edges till reaching a vertex of

either degree one, or greater than degree two. The number of edges

in the path is its length. Fig 6-2 shows the sorted longest linear

paths for the ideal patterns and their noisy patterns. Again, a clas:>

ification scheme using the longest linear paths was not possible.
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BIDEAL NOISY

Degree Sequence Degree Sequence

Pattern 1 2 3 4 5 6 1 2 3 4 5 6

A 8 7 4 1 8 7 4 1

B 7 8 5 7 8 5

C 5 12 3 6 10 4

D 512 3 5 12 3

E 4 14 2 4 14 2

F 6 10 4 7 8 5

G 4 14 2 6 10 4

H7 8 5 7 8 5

4 414 2 6 10 4

6 610 4 6 10 4

K 5 12 3 4 14 2

L 7 9 3 1 6 11 2 1

H 4 14 2 6 10 4

N 4 14 2 5 12 3

0 6 10 4 6 11 2 1

P 7 8 5 7 8 5

Q 4 14 2 4 14 2

R 5 13 1 1 6 11 2 1

S 4 13 3 5 )12 3

Fig 6-1. The degree sequences for the ideal and noisy MST's for the nineteen
synthetic patterns is shown. For example, the degree sequence for the
ideal MST for pattern A is 11111111 2222222 3333 4.

8 7 4 1
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IDEAL NOISY

Length of Linear Paths Length of Linear Paths

Patterns 123 4 56 7 8 91011 12 1314 12 3 45 678 910 11

A 82 11 8 3 1

B 6 3 1 17 12

C 1 3 11 4 3 1

D 3 1 21 4 1 11

E 21 1 1 2 11 1

F 5 11 11 62 3

G 2 11 1 3 3 21

H 5 42 54 2

1 3 1 1 81

J 3 41 1 3 32 1

K 3 111 1 1 1 2 1

L 3 2 111 35 2

M 4 3 1 1 1 3 1

N 1 1 2 1 411

0 4 2 12 3 12 2

P 6 3 11 6 3 11

Q 2 1 1 1 1 2 11

R 2 21 1 1 4 1 2 1

S 1 62 1 1 2 2 111 111

Fig 6-2. The length of linear paths for the ideal and noisy MST's for the nineteen
synthetic patterns is shown. For example, the length of linear paths
for the ideal MST for pattern a is 11111111 22 3 4.

8 2 1 1
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The final attempt was to match MST's by their adjacent edge

lengths. For this technique all possible adjacent edge lengths of

the tree are found and sorted. Then classification is done by

deciding whether the sequences from two trees match.

The comparison of adjacent edge lengths is much more complicated

than the comparison of distances done in the SIDV and SNN algorithms.

In SIDV and SNN algorithms each component of the sequence was com-

posed of only single numbers and there was an obvious way to sort

and compare them. Here, in the adjacent edge length case, each

component is composed of two numbers and the method of sorting and

comparing is not as obvious.

Testing of this method is not complete, but preliminary results

show that this method might give a good classification scheme.

6-1 4
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7. Patterns Specified by a Set of Constraints

The point patterns considered In sections 3-6 were perturba-

tions of some ideal configurations of points. The perturbations

considered were subject only to the restriction that no interpoint

distance should change by more than a fixed percentage. We now

describe an important class of point patterns, which we call con-

strained patterns which include the ca-percent perturbation model.

Unlike the a-percent perturbations models, the constrained patterns

do not admit a simple class of general recognition algorithms,

though we present an example to illustrate how certain realistic

instances can be handled quite easily.

A constrained pattern is merely a set of conditions which can

be tested on a point set in the plane. If a point set satisfies

all the conditions it is called an instance of the pattern. Dif-

ferent classes of constrained patterns can be defined depending on

the nature of the conditions. Examples of useful conditions include

restrictions on interpoint distances, angles formed by lines join-

ing certain points, total size of the pattern and minimum distance

between certain points. Little can be said about the problem at

this level of generality.
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7.1 An Example

We now give an example of a pattern closely related to an

existing real system . The pattern, shown in Fig 7-1, consists

of seven points. Three points form the vertex of an equilateral

triangle of side length 50 feet at the vertex of the V. None of

the remaining four points can be closer than 150 feet from one

another or to any of the three points at the vertex. It must be

possible to superimpose the shaded V of Fig 7-2 on the pattern in

such a way that the mean of the three vertex points lies at the

vertex of the V, and regions A and B contain two points each. An

algorithm that gives a complete solution to the recognition problem

for this pattern is presented below. Any set of points satisfying

the constraints of the pattern will be labeled by the algorithm as

an instance of the pattern. We first give an informal statement of

the algorithm which we call Algorithm A.

Algorithm V (Informal)

1) Locate the vertex of the V by finding three points, a, b,

c, whose interpoint distances are all 50 feet. Find the

mean m of these three points.

2) Project all points other then a, b, and c onto tChe unit

circle with center m.

7-2



Compute the angles vl,.. .,v 4  formed by the consecutive

points on the circle. If exactly one of the v i is greater

than 1500, then state this is not a V and terminate.

3) Renumber the subscripts of the vi's cyclicly if necessary

so that v4-v 1 <150
0 .

4) Test the v 1 s for the satisfaction of inequalities required

by the V pattern (to be discussed next). If all the

inequalities are satisfied, an instance of the pattern

has been found, else the points do not form an instance

of the pattern.

We now give a formal definition of theV pattern.

Def. A V pattern is a set P = a1 ,.. ., a 7  of seven points in

R2 where the coordinates of the point ai are (xiyi). The

set P must satisfy the following conditions:

1) d(a 5, a6 ) = d(a 5 ,a7 ) = d(a 6 ,a7 ) = 50 where d denotes

Euclidean distance

2) Let m be the point with coordinates (mlm 2 ) where

m = 1/3(x 5+x6+x7 )

m = i/3(y5 +y6 +y7 )

For i =1,2,3,4, d(ai,m)<1000

3) For i =1,2,3,4, J = 1,...,7 d(ai,aj)> 150

4) The following figure can be superimposed on the plane

in such a way that points 0 and m coincide and points

a1 and a2 lie in one shaded region, while points a3

and a4 lie in the other.

7-3
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Fig 7-1. An example of the V pattern.
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Fig 7-2. The three regions of' the V-pattern
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303

The curved segments are circular arcs from a circle of

radius 1000 and center 0.

We now use the above definition to define a set of inequalities

which can be used to test whether the sectors described above can

be imposed on a set of points. Assume we

have an instance of the V pattern. Relabeling our points if

necessary we may assume A(al,a 2 ), A(al,a 3 ), A(a 1 ,a4 )

are less than 1500 and d(m,ai ) < 1000 feet for i = 1,...,4.

Clearly 00 <A(al,a 2 ) < 30

00 <A(a3,a 4 ) <300

900 <A(a 2 ,a 3 )

A(a ,a 4 ) <15001 ~
Conversely we shall show that if these inequalities hold for points

( al,a 2 ,a 3 and a4 then we have a V pattern. A(aiaj) denotes the angle

formed by ai, 0, and aj.

7-6
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Algorithm for detecting V pattern (Formal):

Basic V pattern - three points at vertex, two on each side of V

I Compute the interpoint distance matrix X(I,J) I = 1,... 7,

J - 1,...7 where 7 is the number of points in the pattern

and X(i,j) is the distance from point I to point J.

II In the upper triangular matrix { X(I,J)} I = 1,...,N-1,

J = I+l,...,N compute the number, K, of values X(I,J)

satisfying 40< X(I,J)<0. If K # 3 terminate the algor-

ithm. The pattern is not a V. If K = 3 and X(I 0 ,J0 ),

X(I IJ) , and X(I 2,J 2 ) are the three values found then:

If the set { I ,J0,IiJlI2J 2 } contains exactly

three distinct values go to step 3; else stop. The

pattern is not a V.

III Let ab,c, be the three distinct values found in the set

S. Set m = i/3(al+bl+cp,a2 +b2 +c2 ) where

point a has coordinates (a1 ,a2 )

" b " " (bl,b 2 )

C " " (Clc 2 )

(M is the vertex of the V)

IV Let T= {Y 1 , ... ,Y4} bethe set of points in the pattern

excluding points a, b and c.

Let ei denote the line segment Joining M and Yi for

i = 1,...,4.

Let fi denote the angle in the counterclockwise direction

from a horizontal line through to ei.

If any length (e i ) is greater than 1000 terminate with

failure.
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0 V Sort the values f1 , i 1,...,4 in increasing order.

Denote the sorted angles by vl,...,v 4 .

Compute the values { v 1 -VI3.}1  and 1 -v 4* Denote

this set by Q.

If exactly one element of Q is greater than 1500 go to

step VI; else terminate with failure.

VI Renumbering the subscripts of the v if necessary, we may

assume, without loss of generality, that V l-v 4 is the

one value greater than 1500.

VII Assume N 7

If v2-vl < 300

and v -v > 90032-

and v -v < 300
4 3

and v 4-v 1 <1500

then terminate with success.

Otherwise terminate with failure.

7-8
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From the definition of the V pattern, it can easily L,., slw:-r.

that any instance of this pattern will be recognized by the

algorithm. We now show that the algorithm claims detection

for arestricted V pattern only if it truly is a V pattern. To

see this, it suffices to show that a V can be superimposed on the

pattern if the restrictions on angles given in step VII of algorithm

V are satisfied. Thus we assume we have a point in which will be

the vertex of out V and four points al,a 2, a3 and a4.

a4

a4

V 2

a1
Fig. 7-3.

Let VIV 2 , and V3 be the angles shown in Fig 7-3 We assume 0<Vl<30 0

0 V 300, V> 900 and V +V +V < 1500. Let V denote the shaded
0 30 2 1 2 3--

region in Fig 7-4.
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43
4 300

0 -h
2

3Q0

Fig. 7 0-4.
h1

Suppose we superimpose Fig 7-3 on Fig 7-4 by placing point 0 on

point M and line Ohl on Ma1 .Since V1 +V2 +V3< 1500, none of the

points al,a 2,a3 and a4 can lie outside the angle h1 Oh2 . Since

V 1 30 , and h1Oh 2 = 300, both a and a2 will lie in a shaded

region. If a3 and a4 lie in the other shaded region, we are done.
h3

a4
al

3

M hM= 0 _ _ _ _ _ _ _ __h

a 2 2
a2

7-10 1
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If not, then a3must lie in the angle h.0h 3.

h~ 3

h,

h 4
3

aa

0 -

Inc Vhi cas 300 botat an aclkie ilnle 3 hsonIthalnd ah li

3 - 3 
h'2

in angle h 1Oh 2 we are done. Neither a1 nor a2 can lie outside angle

h 1Oh 4 since we shifted clockwise by less than 30'. Thus the only

way a1 or a2 can fail to lie in angle h20Oh 3 is if a2 lies in angle

h 2Oh 3. But if this happens then V 2is less than 900. This is a

contradiction since we assumed V2 > 900. Thus we can superimpose

a V pattern on the points.
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. 8. Conclusions

Two classes of point patterns were investigated. The first

class was the prototype pattern with a noise model. We feel that

classification of these patterns can be accomplished using the dis-

cussed methods, SIDV, SNN and MST, under certain restrictions. If

the number of points in the pattern is small, less than 100, then

the SIDV method would be better. If the number of points in the

pattern is large, more than 100, then the SNN or MST methods would

be more useful.

The other restriction concerns the relative number of additions

or deletions of pattern points. If the percentage of additions or

deletions is small, for example on the order of 10%, then the SIDV,

SNN and MST methods are still feasible. If the percentage is large,

then other methods should be used. (See Sec 9.2.)

The techniques used to classify prototype point patterns all

gave a measure of the quality of the match. This measure is useful

since it can be used to provide a measure of the confidence on the

classification of a particular pattern.

The second class of point pattern investigated was a pattern

specified by a set of constraints. Due to lack of data, only one

example was studied. An algorithm that could recognize any instance

of this pattern was successfully developed. Generalization of this

technique was impossible without more data. (See Sec 9.3.)



9. Recommendation for Future Investigation

9.1 MST

The experimentation using the adjacent edge lengths of the MS.T

for classification should be finished. Variations of this method

which take into account the angles of the MST could also prove very

useful.

Classification using the adjacent edge lengths is done by

sorting the components, which consist of pairs of edge lengths, and

comparing the components. This method could Le expanded by includ-

ing the angle between the adjacent edge lengths. The components,

which now consist of a pair of edge lengths and an angle, are

sorted and compared componentwise.

9.2 Additions and Deletions of Pattern Points

The methods reported for classification, the SIDV and SNN,

were very successful for relatively few additions or deletions of

pattern points. These methods are particularly attractive because

they are simple and fast to compute. However, as the number of

additions or deletions of points become large relative to the

number of points in the pattern, then classification using the SIDV

or SNN could become computationally expensive. In order to evaluate

these methods more thoroughly, precise information about the prob-

ability of additions or deletions of points needs to be provided.

If this probability turns out to be a significant proportion,

then classification using more statistical type of information

should be investigated. For example, one class of statistical

properties that is independent of translation and rotation is the

9-1



moments of the pattern. The ij th mmn ftepteni eie

as mj = Exi . To make the moments independent of the choice of

axis, the origin should be moved to the center of gravity of the

pattern, defined by(MlO, Moi) where N is the number of points in the

pattern. The x-axis is then chosen to be the principal axis which

is the line through the center of gravity about which the spread of

the pattern points is least. Odd moments, now defined with respect

to the new coordinate system, will give a measure of the balance of

points between left and right, or up or down. Even moments will

give a measure of the spread of pattern points away from the axis.

9.3 General Approach to Pattern Specified By Constraints

Although an algorithm for recognizing a pattern specified by

constraints (the V-pattern) was easily devised, it was specific to

that pattern. In order to devise more general classification sc'hemes,

many more patterns specified by constraints need to be studied.

The classification schemes would probably utilize spatial and

angular relationships among the points.

9.4 Testing of Classification Schemes

Testing of all the devised classification schemes should be

performed on actual data from point patterns in order to make a

final determination of their relative usefulness.

9-2



BIBLIOGRAPHY

1) Dickson, L. E., "Algebraic Invariants," John Wiley and Sons,
New York, 1914.

2) Harary, F., "Graph Theory," Addison Wesley, Reading, 1969.

3) Kahl, D. J., A. Rosenfeld, and A. Danker, "Some Experiments
in Point Pattern Matching," IEEE Trans on Systems, Man and
Cybernetics Vol. SMC-10, No. 2, February 1980, pp 105-116.

4) Simon, J., A. Checroun, and C. Roche, "A Method of Comparing
Two Patterns Independent of Possible Transformations and Small
Distortions," Pattern Recognition 4, 1972, pp 73-81.

5) Zahn, C. T., "Graph-theoretical Methods for Detecting and
Describing Gestalt Clusters," IEEE Trans Computers Vol. C-20,
No. 1, January 1971, pp 68-86.

6) Zahn, C. T., "Using the Minimum Tree to Recognize Dotted and
Dashed Curves," Proc of on Intl. Computing Symp. (1973),
A. Gunther et al (Editors), North Holland Publishing Company,
1974.

7) Zahn, C. T. "An Algorithm for Noisy Template Matching,"
Proc IFIP Congress (1974), pp 698-701.

10-1

- -



A-1

Appendix I

Formal Definition of Problem

Def A pattern is a finite set of points in R2 .

Def Let S = {P1,...,Pn) be a set, such that each element,

Pi. of S is a finite set of points in the plane. Denote

the elements of the set Pi by {ail,...,aik(i)} where

k(i) denotes the number of points in Pi" For 1<i< r,

1<j_ k(i), let aij = (xiYi) where x and y1 J are

the cartesian coordinates of the point aij. The set S

will be referred to as the set of ideal patterns and each

element Pi of S will be called an ideal pattern.

Def Two patterns A and B are said to be equivalent if there

exists a translation, rotation, and reflection of R 2 such

that some product of those induces a 1-1 map of the point

set A into the point set B.

Def A point pattern classification procedure T. for a set

S = {P1 ,.. 2P r} ideal patterns is a procedure realizing

a function fTs: N+2(,'-.,r) where N is the set of all

finite point sets in the plane and 2(1* .,r) is the set

of integers {1,...,r }. Intuitively, given a pattern P

in N, fTs(P) consists of the indices of the ideal patterns

which could possibly match P.

Def A point pattern classification procedure Ts, S= {P 1 ,...P r
r

is called regular if for each P in N such that P is equiva-

lent to Pi for some i in {l,...,r}, we have iE fTS(P). Thus
ai
a regular point pattern classification procedure always in-

__ _ _ _ _ _ __ _ _ _ _ _ _



A-2

cludes a pattern Pi as a possible match for a pattern P if

P, can be obtained from P by translations, rotations, and

reflections.

Def A noise model M for a set S ={ P1,...,Pr} of ideal patterns

is a function M: S- 2N where 2N is the set of all subsets of

the set N of finite point sets in the plane. Thus M assigns

to any pattern Pi in S, a set of patterns. We call any ele-

ment of this set a noisy version of Pi.

Def The a-percent noise model M for an ideal set of patterns

S = { P,...,Pr} and a> 0 is the noise model for S where for

any 1< i <r, M (P.) is defined as follows:

A pattern P is an element of M.(P) iff

1) The cardinalities of the two sets Pi and P are the

same, i.e. pl=I pi I

2) If Pi = { al,...,am} and P ={bl,...,b m} then there

is a 1-1 function g: { 1,...,m} { 1,...,m} such that

for all I< k,n < m

Jd(akan) - d(bg(k)'bg(n)I<

d(ak,an)

where d(a,b) denotes the Euclidean distance between

points a and b.

Intuitively, M assigns to a pattern P those patterns in S

which can be obtained by perturbing the interpoint distances

in P by no more than a-percent.

2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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S

Def An a-percent regular point pattern classification procedure

R for an ideal set of patterns S ={ P..., "Pr} is a regular

point pattern classification procedure such that if fRs is

the function corresponding to Rs, then Pe M(Pi) implies

ic fs(P) for 1 < r. Hence such a classification procedure

is merely a procedure which designates Pi as a possible match

for P if their interpoint distances match to within a-percent.

(I
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Appendix 2

Nineteen ideal patterns of twenty points each used to test

the SNN and MST techniques

Appendix 3

Minimal spanning trees of the ideal patterns in appendix 2

Appendix 4

Minimal spanning trees of noisy versions of the patterns in

appendix 2
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